

PICO-NARE:
Measurements at 2225 m
on the summit caldera of
Pico mountain,
Pico Island,
Azores, Portugal

R. Honrath¹, P. Fialho², D. Helmig³, R. C. Owen¹, M. Val Martin¹, J Kleissl¹

¹Michigan Tech

² University of the Azores

³ University of Colorado

Measurement Location

Goal: Continuous sampling in central N.
 Atlantic FT (with occasional MBL upflow).

View at beginning of a 2004 event

Closeup of the station 07/18/2004

Current Measurements

- CO (7/2001)
- O3 (7/2001)
- Black carbon (aethalometer) (7/2001)
- NO, NO2, NOy (7/2002)
- NMHCs (in-situ GC and cartridge sampler) (7/2004)
- Met (wind, temp, RH, JNO2)

Mountainside Met (summer 2004)

- Purpose: Characterize upslope/downslope flow.
- Two 3-m towers (wind, T, RH)
- One 10-m tower (wind, turbulence, T, RH)
- Four wireless temperature sensors ("motes")

ICARTT Intensive Activities

- Nearly continuous measurements during WP-3/DC-8 period+~4 days.
- Coordination with British Bae-146 flights; race track profiles near Pico at the end of each flight for intercomparison and to characterize MBL/FT boundary near the mountain.

(First such flight 7/17; Data not yet compared.)

Transport patterns during a typical lower FT U.S. outflow event hitting the Azores 7/10/2003 00 UTC

1. Backward trajectories

NOAA HYSPLIT MODEL Backward trajectories ending at 00 UTC 10 Jul 03 FNL Meteorological Data

Produced with HYSPLIT from the NOAA ARL Website (http://www.arl.noaa.gov/readv/)

Column-integrated S-R-Relationship for measurement point 2

Actual time 20030620. 0 End time of sampling 30000

2a. HYSPLIT residence time

Column-integrated S-R-Relationship for measurement point 2

Actual time 20030620. 0 End time of sampling 30000

2b. HYSPLIT Footprint (res time x emissions)

Column-integrated S-R-Relationship for measurement point 2 Actual time 20030710. 0 End time of sampling 30000

3. HYSPLIT retro plume

Results from summers 2001-2003

- Large degree of interannual variability in [CO].
- Attributed to greater fire emissions and more frequent flow from Canada and subarctic during 2003 (and 2002).

CO-O3 correlations: 2001 and 2003

- Red: U.S. outflow events.
- Blue: Biomass burning events.
- Green: Either or both.

- d[O3]/d[CO] slope during U.S. outflow ~1.0, >> previous observations over east coast.
- Significant O3

 enhancement during
 biomass burning events,
 even those from Siberia.

Plans for the future

- Measurements during fall 2004, spring 2005.
- Takedown summer 2005. (So far, Portuguese Met Institute not interested in taking it over.)

Acknowledgements

National Oceanic and Atmospheric Administration

Science and Technology Foundation (Portugal)

National Science Foundation

U.S. Air Force

More information:

<u>http://www.cee.mtu.edu/~reh/pico/icartt</u> (icartt password)
<u>http://www.cee.mtu.edu/~reh/pico</u> (public page)

4. HYSPLIT forward model

5. Sea-level Pressures during the event Flow occurs along upper edge of Azores high and south side of low. Reaches Azores as the high weakens or stretches.

View over cliff toward the Northwest

View toward ~West ITOP base (view from Pico) 07/07/2004

U.S. Outflow was responsible for most high-CO periods in summer 2001

Ozone

Siberian fires impacted Pico Interannual variability in Siberian fire emissions

CO enhancements during transport of Siberian and U.S. fire emissions during 2003

Location of fires responsible for AOT enhancement:

CO at Pico

AOT Over Azores, modeled by NAAPS using FLAMBE (GOES) and MODIS fire counts